µ-Chip. The World’s smallest RFID IC – Radio Frequency Identification Intergated Circuit

Electronic Numbering of Products and Documents using the “µ-Chip” (or mu-chip) supported by a Networked Database unleashes new Business and Life Style Applications that facilitate innovative Manufacturing, Distribution, Consumption, Tracking and Recycling operations.

*Size compared to a human fingertip

The RFID, wireless semiconductor integrated circuit that stores an ID number in its memory, was proposed about a decade ago as an alternative to the barcode. Its use, however, has so far been limited to a few applications where its advantages offset its relatively high cost.

The µ-Chip is Hitachi’s response to resolving some of the issues associated with conventional RFID technology. The µ-Chip uses the frequency of 2.45GHz. It has a 128-bit ROM for storing the ID with no write-read and no anti-collision capabilities. Its unique ID numbers can be used to individually identify trillions of trillions of objects with no duplication. Moreover with a size of 0.4mm square, the µ-Chip is small enough to be attached to a variety of minute objects including embedding in paper.

Manufacturing, distribution and tracking systems can be built or enhanced using the µ-Chip with an event-driven accumulation of, and on-demand access to, information stored in a database through the network. By coupling this database with the versatility of the µ-Chip new business and life styles applications can now be brought to reality. These new applications allow manufacturing, commerce and recycling processes to be operated in a way that has not been possible before.

 

September 2, 2003

Hitachi Develops a New RFID with Embedded Antenna µ-Chip
–Makes Possible Wireless Links that Work Using Nothing More Than a 0.4mm X 0.4mm Chip, One of the World’s Smallest ICs–

Tokyo, September 2, 2003-Hitachi, Ltd. (TSE: 6501) today announced that it has developed a new version of its RFID µ-Chip embedding an antenna. When using Hitachi’s original µ-Chip, one of the world’s smallest RFID ICs measuring only 0.4mm X 0.4mm, an external antenna must be attached to the chip to allow external devices to read the 128-bit ID number stored in its ROM (Read-Only-Memory). This newly developed version, however, features an internal antenna, enabling chips to employ the energy of incoming electrical waves to wirelessly transmit its ID number to a reader. The 0.4mm X 0.4mm chip can thus operate entirely on its own, making it possible to use µ-Chip as RFID IC tags without the need to attach external devices. This breakthrough opens the door to using µ-Chips as RFID IC tags in extremely minute and precise applications that had been impractical until now. For example, the new µ-Chip can be easily embedded in bank notes, gift certificates, documents and whole paper media etc.

The µ-Chip, announced by Hitachi in July 2001, is one of the world’s smallest IC chips at 0.4mm X 0.4mm. The chip data is recorded in read-only memory during the semiconductor production process, and therefore cannot be rewritten, thus guaranteeing its authenticity. Applications of the µ-Chip include a system for managing the SCM materials on sites, and entrance tickets for Expo 2005 Aichi Japan which opens on March 25, 2005.

The primary features of this revolutionary µ-Chip are as follows.

(1) A RFID IC chip measuring only 0.4mm X 0.4mm with built-in antenna

Despite its extremely small size, this µ-Chip has a built-in antenna to permit contactless communications (at very close proximity) with other devices without using an external antenna.

(2) No need for special manufacturing equipment

The antenna is formed using bump-metalization technology (used to create the electrical contacts of an IC), a process already widely used by semiconductor manufacturers, thus eliminating any need for specialized equipment.

(3) Complete compatibility with conventional µ-Chip

With ID numbers and support systems that are fully compatible with those of existing µ-Chip, the new chip is fully compatible with all systems that use current µ-Chip technology.

Hitachi plans to develop numerous markets for this chip that take full advantage of its outstanding features. Embedding the chip in securities, identification and other valuable documents such as vouchers offers a highly sophisticated means of preventing counterfeiting. Another high-potential application is agricultural products, where the chips can help ensure the safety of food by providing traceability of ingredients. Additionally, the chips can be embedded in business forms to automate logistics systems and many other business processes.

About Hitachi, Ltd.

Hitachi, Ltd. (NYSE: HIT), headquartered in Tokyo, Japan, is a leading global electronics company, with approximately 340,000 employees worldwide. Fiscal 2002 (ended March 31, 2003) consolidated sales totaled 8,191.7 billion yen ($68.3 billion). The company offers a wide range of systems, products and services in market sectors, including information systems, electronic devices, power and industrial systems, consumer products, materials and financial services. For more information on Hitachi, please visit the company’s Web site at http://www.hitachi.com.

Technical Description

Specifications of µ-Chip

Simple Mechanism :

128-bit read only memory, no anti-collision control

Super-micro Chip: 0.4 mm x 0.4mm

Battery Less:

The µ-Chip a passive IC, that receives the microwave from the reader, generates electric power from the microwave, decodes its µ-Chip ID and transmits it back to the reader.

Unique ID (µ-Chip ID):

Each µ-Chip stores unique 128-bit data in its ROM as its ID, to distinguish it from the others.

Radio Frequency:

2.45 GHz

Maxmum Communication Length:

about 25 cm (with an external antenna) (Reader: 300mW, 4 Pach Antenna, Circular Polarization)

Response Time:

20msec

Operations

Interrogation:
When the reader is activated by a terminal device (PC), it radiates microwave on to the µ-Chip attached to a carrying article and the µ-Chip returns its µ-Chip ID to the reader. The carrying article may be a tag, a label or a customers products.
Database Query:
The terminal device authenticates the µ-Chip ID and uses it to retrieve information from the database about the article carrying the µ-Chip. The result of the query can be displayed on the terminal device or used by a software application.
Database Construction:
The database may be located at the site server or at the central server and stores attributes of the µ-Chip carrying article. Information associated with the event of readout may be used to update the database.
Linking:
Linking each µ-Chip ID to the carrying article is performed upon application of the µ-Chip to it.
The attributes of the article at this point comprise the basic entry to the database. For efficient, automated linking process, consultation and engineering services are available.

http://www.hitachi.co.jp/Prod/mu-chip/

http://www.hitachi.com/New/cnews/030902.html

http://www.hitachi.co.jp/Prod/mu-chip/technical/index.html

CNBC – Verichip Human Microchip Implant

Fox 5 – Verichip Human Microchip Implant

Mexican Attorney General Gets Security Microchip Implant in Arm – ABC News, Introduction of the microchip (15.07.2004)

.

Mexican Attorney General Gets Security Microchip Implant in Arm

July 12 (Bloomberg) — Mexico’s Attorney General Rafael Macedo de la Concha said he had a non-removable microchip implanted in his arm as a security measure to track him throughout Mexico and to give him access to a crime data bank.

Other high-ranking law enforcement officials who have access to the databank will also receive the chip implants, Macedo said in a transcript of an informal interview he gave to journalists in Mexico City provided by the attorney general’s office.

“The system is already in place and I already have it,” he said. “It’s only for access, for security and so that I can also be located at any moment anywhere I am.”

The $26 million data bank was created to link information on criminals and records of outstanding arrest warrants among the attorney generals branch offices in all 31 states and the federal district.

The chip can’t be removed, but will be deactivated after Macedo’s term as attorney general expires, he said.

About 160 Mexican officials will carry the microchip, according to the Mexico City daily El Universal.

When asked if the implant hurt, Macedo replied, “a little.”

http://www.bloomberg.com/apps/news?pid=newsarchive&sid=aYyZfaVRFtWQ&refer=latin_america

UNBELIEVABLE – Scientists Implanted Bar Code Tags inside one day mouce embryos. Human ones coming soon.

Read more here

UNBELIEVABLE – Scientists Implant Bar code tags, inside one day embryos !!!! Soon and inside humans

https://norfiden.wordpress.com/2010/11/26/unbelievable-scientists-impant-bar-code-tags-inside-one-day-embryos-soon-and-inside-humans/

UNBELIEVABLE – Scientists Implant Bar code tags, inside one day embryos !!!! Soon and inside humans

AUTONOMOUS UNIVERCITY BARCELONA
Universitat Autonoma de Barcelona, Consejo Superior de Investigaciones Científicas (CSIC)
 
         Fig. 1 A scanning electron microscope image of a barcode.
 
 
 
 
  Fig. 2. Light microscope micrograph of an in vitro cultured macrophage cell with polysilicon barcode. Picture was taken with a 40x objective on an inverted optical microscope
 
 
Fig. 3. Light microscope micrograph of a mouse embryo at the two-cell stage with different polysilicon barcodes adhered to the zona pellucida. Picture was taken with a 20x objective on in inverted optical microscope.


 

 

Diverse types of barcodes have been designed in order to track living cells in vivo or in vitro, but none of them can follow an individual cell up to ten or more days. Until now, codes have been envisaged to follow different
cell subpopulations mixed in the same culture, to track a minority group of cells representing the whole population or to follow a subpopulation of cells in vivo.
.
Individual cell tracking is important to evaluate individual cell behavior (cell survival, cell movement, relationship with other cells, etc.) under different conditions (exposure to toxic gases or compounds, therapeutic drugs, source of light, a chemical stimulus, etc.). Individual cell tracking is also of great interest in embryo traceability in assisted reproduction technologies (ART) to make sure that the embryo to be transferred belongs to the right couple.

A biocompatible and non-cytotoxic encoded microparticle has been developed to track isolated cells or embryos. It is an useful tool in research to follow the behavior of individual cells exposed to different conditions or different therapeutic drugs and in clinical settings to track individual oocytes and embryo as well. We are seeking a company partner to further develop the technology through a co-development and license agreement.

  

The invention
A biocompatible and non-cytotoxic encoded microparticle for labeling or tracking an isolated cell (e.g. macrophages, fibroblasts, ESC or oocytes) or an isolated embryo has been developed. The microparticle is made of a biocompatible material using silicon microtechnologies. This technology allows the production of thousands of barcodes containing different codes. Its external shape comprises a code by which it can be identified using an inverted optical microscope with an objective between 20X – 100X. Its dimensions are small enough that it can be introduced into or attached to isolated cells or embryos.

Contrary to previous labeling and tracking devices, the code of the microparticle is comprised in its external shape. The code of the particle may thus be considered a spatial code. There is no need for fluorochromes to be able to identify the code.



Innovative aspects and applications
– Encoded microparticules as a High throughput screening cells tool.
– Encoded microparticules for tracking human embryo in IVF treatment.
– Biocompatible and no cytotoxicity.
– Adherence to zona pellucida or plasma membrane .
– Optical microscopy code identification.
– Low-cost manufacture and high versatility.
State of development
– Barcodes have been tested in cells (macrophages) and in mouse embryos.
– Studies of Biocompatibility and cytotoxity have been carried out in macrophages and mouse embryos (during the pre-implantation development, from zygote to hatching stage).
– Barcodes are made using silicon microtechnologies (MEMs and NEMs fabrication) which allow the production of the devices with dimensions in the micron range.
Ongoing research
– Adherence to plasma membrane. Results are expected at the end of the second quarter of the year.
– In vivo studies in mouse. Results are expected within the last quarter of the year.

 Download it here

Autonomous University of Barcelona – Encoded (with barcodes) microparticles for isolated cell and embryo.pdf

OXFORD UNIVERSITY

Oxford Journals – Human Reproduction  

 
A novel embryo identification system by direct tagging of mouse embryos using silicon-based barcodes
 

 

.

Critics of the selection that’s often involved in assisted reproductive technology – picking a 5’10”, blond-haired, Ivy League grad egg donor, for example – say it turns conceiving a baby into a shopping exercise. It’s probably safe to venture, however, that none of the critics envisioned a day when we’d be bar-coding embryos.

That is precisely what researchers at the Autonomous University of Barcelona have done, reports New Scientist. Using cells from mouse embryos and eggs, the scientists developed a procedure that involves inserting microscopic silicon bar codes into a gap between the cell membrane and an outer membrane called the zona pellucida.

The next step is to try the technique on human embryos and eggs. That will happen soon; the Government of Catalonia health department has already approved the method for use on genetic material provided by Spanish fertility clinics.

The technique could help fertility doctors avoid mix-ups during in-vitro fertilization – such as a 2002 case in which a white couple gave birth to black twins.

Researchers at the Autonomous University of Barcelona have come up with an ingenious solution for keeping track of embryos and egg cells during in vitro fertilisation procedures: microscopic bar codes.

These mouse eggs were tagged by injecting microscopic silicon bar codes into their perivitelline space, the gap between the cell membrane and an outer membrane called the zona pellucida, which binds sperm cells during fertilisation.

The bar codes, which carry unique binary identification numbers, are biologically inert: they do not affect the rate of embryo development and are shed before the embryos implant into the wall of the uterus. The technique aims to simplify individual embryo identification, streamlining in vitro fertilisation and embryo transfer procedures.

The Government of Catalonia’s Department of Health has granted permission for the technique to be developed using human eggs and embryos from fertility clinics in Spain.

The research, published in the journal Human Reproduction, may go some way to avoiding mix ups at fertility clinics.

 the UAB lab studies, labeled embryos were shown to develop normally up until the blastocyst stage, which precedes implantation. The researchers also studied how well the labels stayed on throughout the development cycle, how easily they could be read with a standard microscope, how they could be eliminated after the shedding of the zona pellucida, and how well they could stand up to the freezing and thawing of their host embryo.

There were some problems with embryos being able to free themselves from the labels when they shed the zona pellucida. The scientists are therefore now looking at modifying the surface of the labels, so they could be mounted on the outside of the covering, instead of being injected into the perivitelline space. They are also working on an automated bar code reading system.

Permission has been given by the Government of Catalonia’s Department of Health for UAB to begin testing its system with human oocytes and embryos from several fertility clinics in Spain.

The research was recently published in the journal Human Reproduction.

.
.
.
.